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Abstract  

In this paper, an adaptive meshfree least-squares method (LSM) is proposed, which does not 

use any mesh predefined through node connectivity. In this present formulation, a radial point 

collocation procedure is used to discretize the system governing equations. A modified 

least-squares technique is employed to stabilize the solution to obtain more stable and accurate 

results. The adaptivity scheme adopted in this work uses an error indicator based on 

interpolation error. Voronoi diagram is used in the refinement procedure at each adaptive step 

for additional node insertion. Numerical examples are presented to demonstrate that the 

proposed adaptive meshfree LSM can obtain efficiently stable solutions of desired accuracy.  

Introduction 

Finite Element Method (FEM) has been now widely used to solve various kinds of engineering 

problems. Although FEM has achieved great success, it has encountered mesh-related 

difficulties while dealing with large deformation problems due to large mesh distortion [2, 3]. 

In the last few decades, a new generation of numerical methods, meshfree method, has been 

developed to overcome those mesh-related difficulties. Meshfree methods are formulated 



based on a set of scatted nodes and mesh-related difficulties are avoided as no mesh is used. 

This attractive feature also facilitates meshfree method to couple with adaptive techniques to 

perform adaptive analysis, because the nodes can be removed or inserted easily. 

Comprehensive reviews of the recent development of meshfree methods can be found in the 

Refs. [1, 2]. 

Based on the formulation, meshfree methods can be categorized into three major categories: 

meshfree method based on strong-form (or short for meshfree strong-form methods), meshfree 

method based on weak-form [2, 3] (or short for meshfree weak-form methods) and meshfree 

method based on both strong-form and weak-form [4, 5] (or short for meshfree weak-strong 

form methods). Among the three categories, meshfree strong-form methods are the simplest 

and most straightforward method. Neither complicated formulation nor integration is involved. 

As the reason, meshfree strong-form method can potentially couple with adaptive scheme to 

provide an adaptive meshfree method. Although strong-form methods are suffering from 

instability and low accuracy [10, 11, 12], technique can be developed to provide a stable result 

with higher accuracy. Some relevant works regarding adaptive meshfree strong-form methods 

have been done and can be found in the literature [6, 8].  

In this paper, a least-squares method (LSM) is proposed for adaptive analysis. A radial point 

collocation procedure [9] is used to discretize the system governing equations. A modified 

least-squares technique is used to stabilise the solution. An elastostatics problem and a 

Poisson’s equation problem are used to validate the proposed method. Numerical examples 

show that the adaptive meshfree LSM proposed in this work can provide stable solutions of 

desired accuracy efficiently. 



Radial Point Collocation Method  

The idea of well-known conventional collocation method [9] is first to approximate the local 

unknown variable through interpolation of the nodal unknown variable at the surrounding 

nodes. The partial differential equations (PDEs) that govern the problem can then be 

discretized for each node using this approximation to obtain a set of algebraic equations.  

In this work, a radial point collocation method (RPCM) is used, in which radial basis functions 

(RBFs) augmented with polynomial functions are used to construct shape functions. Unknown 

field variable is first interpolated through those at the nodes in the support domain as follows, 
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where n is number of node in the support domain, m is the number of terms of monomials 

(polynomial basis). ( )Qxa  is the vector of coefficients of radial basis ( )xRT , ( )Qxb  is the 

vector of coefficients of polynomial basis ( )xpT .  

In this paper, Multi-quadratic (MQ) is used as a RBF: 
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where ir  is a distance between the interpolation point at x  and a neighbourhood node at ix  
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and cd  is a characteristic length which is the average nodal spacing in the support domain. In 

Eq. (3), cα  and q are the shape parameters for MQ-RBF. The detailed definition of support 

domain and the choice of shape parameter can be found in Ref. [3]. 

Follow the standard procedure described in Section 5.7 of Ref. [3], unknown variable can be 

approximated as  
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where Φ is the matrix of shape functions [3]. 

The derivative of the unknown variable can be obtained easily using Eq. (4). For example, the 

first derivative can be obtained as 
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The governing equation and Neumann boundary condition can now be discretized at each node 

using Eq. (4) by simple collocation. A set of algebraic equations can be assembled to obtain the 

following form, 

where GK  denotes stiffness matrix, U is the vector of the unknown variable at all nodes in 

the problem domain, and GF is the vector of forces applied at all odes in the problem domain.  

Unknown variable can finally be solved by solving the resultant set of algebraic equations after 

the essential boundary condition is imposed. The advantage of the collocation method is that 

it’s simple and easy to be implemented. However, instability is often encountered in 

conventional collocation methods [9, 11, 12]. In this paper, a modified least-squares technique 

is proposed to stabilize RPCM to obtain more stable and accurate results 

A Modified Least-Squares Procedure 

We define a functional Π in the form of 
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where Π is the L2 error norm of the residual in Eq. (6). 
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In seeking the minimal of the functional Π, we have 
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where G
T

G KKK =ˆ  is the modified stiffness matrix and G
T

G FKF =ˆ  is the modified force 

vector.  

Note that in the present least-squares procedure, Neumann boundary condition is imposed in 

the process of forming the stiffness matrix GK and force vector GF . Essential boundary 

condition is imposed at the final stage after obtaining Eq. (9). This procedure is a little different 

compared to the standard least-squares method [10] procedure where the least-squares 

operation is performed after all the boundary conditions are imposed in Eq. (6). 

It is clear that the modified stiffness matrix K̂ , is usually a symmetric matrix and positive 

definite after the imposition of the essential boundary condition. A more stable and accurate 

result can be obtained using a standard linear equation solver to solve Eq. (9), such as the 

Cholesky solver.  

Adaptive Procedure 

As linear and static problems are studied in this work, only node refinement is involved in the 



adaptive procedure. Adaptive algorithm based on interpolation error proposed by Behrens et al 

[6] is adopted here. Error indicator used for the node refinement is defined as  
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where ( )i
S xu  is the value of a field variable or function of field variable such as stress at node 

ix ; ( )i
S xu  is the field variable or function of field variable obtained by an interpolation using 

the vicinity nodes in the support domain of node ix  excluding node ix , i.e. { }ixSS \= , 

where S  is the node set in the support domain of node ix . ( )ixη  reflects the local 

reproduction quality of the interpolation around node ix . Note that ( )ixη  will vanish if the 

field variable is linear around node ix . 

The hypothesis making here is that if the obtained result is a good approximation, the 

difference between ( )i
N xu  and ( )i

N xu  is very small. Thus, no refinement is required to 

perform around the node ix . In contrast, if value of error indicator is very large, it indicates 

that quality of reproduction is not good enough. Thus, refinement scheme is executed to insert 

additional nodes around node ix .  

Critical criteria for refinement are defined as  
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where 1κ  and 2κ  are the tolerant value which satisfy 10 << κ . *η is the maximum error 

indicator value in the entire problem domain and maxu  is the maximum field variable or 

function of field variable. Node refinement will be executed if the critical criteria for 

refinement are satisfied.  

Since no mesh is used in the meshfree method, the problem domain can be refined 

conveniently by node insertion. In this work, voronoi diagram is used to locate the position for 

the additional nodes, as shown in Fig. (1).  



 

Figure 1. Refinement based on voronoi diagram 

Numerical Example 

In this paper, the validity of the proposed adaptive analysis is tested on two example problems. 

The first example is a Poisson’s equation problem with three essential boundary conditions 

and one derivative boundary condition given. The second example is a 2-D cantilever beam 

subjected to a load at the free end. 

Example 1: 

In example 1, a Poisson’s equation is considered as below. 
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The problem domain is ]1,0[]1,0[ ×=Ω , with Neumann boundary condition 
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and essential boundary condition 
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The adaptive analysis starts with regular distribution of 66×  nodes at initial step. Tolerant 

values for critical error indicator are 01.021 == κκ .   



    

Figure 2. Node distribution at each adaptive step for Poisson’s equation 

Starting with 36 regular distributed nodes, the computation ends at 8th step with 164 nodes, the 

overall error norm of field variable u has been improved from 4.17% to 0.45%. 

 

Figure 3. Error norm of solution for Poisson’s equation at each step 

Example 2: 

In the second problem, a plane stress problem is considered. A cantilever beam of 48m by 12m 

and 1m thick is subjected to a traction force of 1000N at the free end. The material properties 



are Young’s modulus 2
7103 m

NE ×=  and Poisson ratio 3.0=ν . The exact solution is 

given by Timonshenko and Goodier [7]. 

The adaptive analysis starts with regular distribution of 115×  nodes at initial step. Effective 

stress is used to determine the value of error indicator and the tolerant values for critical error 

indicator are 05.01 =κ and 0075.02 =κ . 

    

Figure 4. Node distribution of Cantilever beam at each adaptive step 

Starting with 55 regular distributed nodes, the computation ends at 6th step with 936 nodes, the 

error norm of effective stress has been improved from 15.55% to 0.81%. 

 

Figure 5. Error norm of effective stress at each step.   



 

Figure 6. Deflection of cantilever beam along y = 0 at first step and final step. 

Conclusion 

From the results of the two numerical examples, it concludes that the proposed adaptive LSM 

has obtained high accuracy results efficiently. Good performance of adaptive scheme through 

error indicator based on interpolation error is observed. The modified least-squares technique 

has also provided a stable result at each adaptive step, which made the adaptive operation 

possible. As meshfree method allows inserting node easily in the problem domain, it makes 

the implementation of refinement process much simpler. The attractive advantages of 

meshfree method have been putting across in the adaptive analysis well and have been 

demonstrated clearly in this paper. 
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